
Introduction to C++:

Workshop One

Dr. Alexander Hill

a.d.hill@liverpool.ac.uk

October 2024

Course Aims

Introduce you to the C++ programming language

Run through the syntax and basic operations

Work through some examples together, increase fluency

Introduction to Monte Carlo methods

Complete a collaborative project using C++ with a Monte Carlo context

Resources

https://alex-hill94.github.io/#teaching

C++ from the ground up, Herbert Schildt

Online compiler: https://www.programiz.com/cpp-programming/online-compiler/

Online tutorials: https://www.w3schools.com/cpp

Interview with C++ creator - https://www.youtube.com/watch?v=uTxRF5ag27A

Jan Kretzschmar (jan.kretzschmar@liverpool.ac.uk)

LLMs (e.g. ChatGPT, Claude) to research concepts, I would highly recommend working through
problems yourself so that you get a better personal feel for the language

https://alex-hill94.github.io/
https://www.programiz.com/cpp-programming/online-compiler/
https://www.w3schools.com/cpp
https://www.youtube.com/watch?v=uTxRF5ag27A
mailto:jan.kretzschmar@liverpool.ac.uk

Course Composition

Weekly two-hour workshops up until the 21st of November

Homework to be done in own time

Group project and presentation

Aim of Workshop One

Introductions

History and philosophy of C++

Get set up with a text editor and compiler

Run a script

Introductions

Started PhD in astrophysics in 2017 at the ARI

Part of the first LIV.DAT cohort (precursor to
LIV.INNO)

Researched cosmological simulations, now

working on medical physics

Primarily use Python

My research

Current research: medical physics

Current research: medical physics

Smart health tracking starts here | ViBo Health

https://www.vibo.health/

My role here

Conduct my own research, co-supervise several students

Connect with industry

Lead some training and organise data science seminar series

Help you! Ask me for advice with coding, placements, paper writing, living
in Liverpool, etc.

Introductions

Introduce yourself!
(background, coding
experience, research

interests)

What do you want to
get from this PhD,
and this course in

particular?

What coding
challenges might you
have over the course

of your PhD?

Slack channel

https://join.slack.com/t/livinno/

shared_invite/zt-2syibrx4g-

lr8xu7_9Q_sGM6vGlJhoAA

What is
C++?

What is C++?

C++ is a superset of the programming language
C (so two languages for the price of one!)

Embodies the philosophy of Object-Oriented
Programming

Extended set of libraries

Millions of developers worldwide

Commonly used in conjunction with languages
like Python on big projects

What is C?

What is C?

Created in the 1970s by Dennis
Ritchie and Ken Thompson at Bell
Labs

The first ‘programmer’s language’:
general purpose and human-readable

A middle-level programming language

Programming languages

Low level

• E.g. Assembly language,

machine code

• Provides nothing more

than direct access to the

computer hardware

• Requires explicit

memory management

• Little (if any) abstraction

• Maximum control

High level

• E.g. Python, Perl,

• Aims to give the

programmer everything

they could want

• Highly human-readable

and abstract

• Automatic memory

management

• Sacrifices some

performances for ease of

use

Middle level

• E.g. C, C++

• Provides a user with a

concise set of tools, while

still offering flexibility

with data management

• Balances control and ease

of use

; x86 Assembly (NASM syntax) - Low Level

; Hello World

section .data

 msg db 'Hello, World!',0xA

 len equ $ - msg

section .text

global _start

_start:

 mov eax, 4 ; sys_write

 mov ebx, 1 ; stdout

 mov ecx, msg ; message

 mov edx, len ; length

 int 0x80 ; kernel interrupt

 ; Adding two numbers (3 + 4)

 mov eax, 3 ; First number

 mov ebx, 4 ; Second number

 add eax, ebx ; Result stored in eax

 mov eax, 1 ; sys_exit

 mov ebx, 0 ; exit code

 int 0x80

// C Programming - Mid Level

#include <stdio.h>

int main() {

// Hello World

printf("Hello, World!\n");

// Adding two numbers

int a = 3;

int b = 4;

int sum = a + b;

printf("Sum: %d\n", sum);

return 0;

}

Python - High Level

Hello World

print("Hello, World!")

Adding two numbers

a = 3

b = 4

sum = a + b

print(f"Sum: {sum}")

Features of C

C allows you to manipulate the constituent components of your computer

No buffer between programme and hardware

Requires the user to define routines for performing high-level operations

Manual memory management required

Great for situations where performance is critical

Did you know that most of NumPy is written in C (with some C++)?

Why C++?

A better way to manage greater complexity

As the required tasks of computers become more

complex, a higher level of abstraction is required

Object oriented programming is a way to achieve this

Little sacrifice in the efficiency and flexibility of C

Backwards compatible with C

C++ History

Created by Bjarne Stroustrup in
1979 at Bell Labs

Originally called ‘C with Classes’

Renamed C++ due to the ++
increment operator (a = 0, a++,
print(a) => 1)

Procedural programming

Programmes run step-by-step in a logical order

Code is comprised of data and the functions which act on them

Each function does one thing

Object oriented programming

Idea: decompose a problem into constituent parts (components)

Each component has its own rules and data

Complexity is reduced

Three characteristics: encapsulation, polymorphism, and inheritance

Encapsulation: Better control

Programmes are made of code and data

Encapsulation relates to the binding of a set of code and data
within a single unit (class)

This object can be private or public

The complexity of the code and data is hidden from the user:
abstraction

Code

Data

Inheritance: better re-use of

code
An object can acquire the properties of another object

Consider a Braeburn apple object. It has properties {edible,

nutritious, seeded, sweet, red}

Now consider a Granny Smith apple object. It has properties

{edible, nutritious, seeded, sweet, green}

Inheritance allows us to avoid repetition in our work, and provides a

way of grouping similar objects together

Inheritance

Class: Food Properties: Edible, nutritious

Class: Fruit Properties: Seeded, plant-based

Class: Apple Properties: Sweet, round

Object: Granny Smith Object: Braeburn

Polymorphism: Better flexibility
Polymorphism means that objects of different classes can be treated as objects of a common base class.

It allows you to write code that can work with objects of various types in a consistent way.

Inheritance lets us inherit attributes and methods from another class. Polymorphism uses those methods

to perform different tasks.

Example: the Animal class has a ‘Noise’ function. An inheriting ‘Dog’ class can override this ‘Noise’

function to produce a ‘bark!’, while an inheriting sheep class can override the function to produce a ‘baa!’

This concept allows our code to work with objects in a consistent way while maintaining flexibility

A coding example is only needing one command to act on separate lists of integers, floats, and characters

C++ is flexible. You can use OOP, but you

don’t have to

Getting started with C++

IDE – Integrated

Development Environment

Provides an editor, compiler, debugger,
AI co-pilot, package installer…

I use an IDE (Visual Studio Code) as a
fancy text editor, as it enables things
like multi-line editing, autocomplete,
useful colouring of different syntax

COMPILERS

Compilers convert the human-

readable source code that you write

into something readable by the CPU

(e.g. machine code or byte code)

#include <iostream>

int main() {

int a = 5;

int b = 10;

int sum = a + b;

std::cout << "The sum of a and b is: " << sum

<< std::endl;

return 0;

 }

.global main
main:
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], 5
mov DWORD PTR [rbp-16], 10
mov eax, DWORD PTR [rbp-20]
add eax, DWORD PTR [rbp-16]
mov DWORD PTR [rbp-12], eax
lea rdi, [rip+15] # Address of the string
"The sum of a and b is: "
call std::operator<<(std::basic_ostream<char,
std::char_traits<char> >&, char const*)
mov rax, QWORD PTR [rip+26] # Address of std::cout
mov rsi, QWORD PTR [rip+38] # Address of the variable 'sum'
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)
mov esi, 10
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)
mov esi, 10
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)
mov esi, 10
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char> >::operator<<(char)
mov rdi, rax
call std::basic_ostream<char, std::char_traits<char>
>::operator<<(std::basic_ostream<char, std::char_traits<char>
>&(*)(std::basic_ostream<char, std::char_traits<char> >&))
mov eax, 0
pop rbp
ret

Compiler

COMPILERS

I will use g++ (GNU C++)

In order to run a C++ script, you first have to compile it

$ g++ -o executable_name test.cpp

$./executable_name

example

Getting started…

Download an IDE, I suggest Visual Studio Code, which supports C++, C#, Java,
Python, and others

https://code.visualstudio.com/download

Create a new directory somewhere called Workshops, inside which create a file
called ‘test.cpp’

In Code: File > Open Workspace… > Open ‘Workshops’ > Open test.cpp

https://code.visualstudio.com/download

You should see an option to install plugins, do it!

To see if you already have a compiler installed, run ‘g++’ in your
command line/terminal (this should be the case if you have a Mac)

If not (e.g. you are using a windows device), go to
https://code.visualstudio.com/docs/cpp/config-mingw and follow the
steps

If this fails, go to this website: https://www.programiz.com/cpp-
programming/online-compiler/

https://code.visualstudio.com/docs/cpp/config-mingw
https://www.programiz.com/cpp-programming/online-compiler/
https://www.programiz.com/cpp-programming/online-compiler/

Getting started…

We’ll start off with a simple code

that creates an executable which

takes two numbers and prints out

the sum

Or copy from https://alex-

hill94.github.io/#WS1

https://alex-hill94.github.io/
https://alex-hill94.github.io/

Running the script

Navigate to the Workshops folder in your terminal (or cmd line)

Or https://www.programiz.com/cpp-programming/online-compiler/

Try compile the script: g++ -o test_it test.cpp

If using a Mac, run compiled script with: ./test_it

If using Windows, run compiled script with: test_it.exe

https://www.programiz.com/cpp-programming/online-compiler/

Congratulations/commiserations!

What’s happening here?

What’s happening here?

C++ allows the use of headers, files which store pre-defined functions

For this examples, the header <iostream> is needed to support the C++ I/O

system

This header is included with your compiler, no further downloads are needed

Headers are included with the #include command

This tells the compiler to use the std namespace

A namespace is a way to encapsulate code elements (variables, functions,

methods) into distinct packages

Elements are grouped into named containers, and are separate from other

namespaces

This helps in larger projects, ensuring that there are no conflicts when using

several libraries or collaborating on larger projects

The std namespace is the entire Standard C++ library

What’s happening here?

// Define a namespace called "MyNamespace"
namespace MyNamespace {
int myVariable = 42;
void myFunction() {
// Code for the function
}
}

int main() {
// Access elements within the namespace using the scope
resolution operator ::
int x = MyNamespace::myVariable;
MyNamespace::myFunction();
return 0;
}

#include <iostream>
#include <cmath>
// using namespace std;

int main() {

int first_number, second_number, sum;
std::cout << "Enter two integers: ";
std::cin >> first_number >> second_number;

// sum of two numbers in stored in variable sumOfTwoNumbers
sum = first_number + second_number;
// prints sum
cout << first_number << " + " << second_number << " = " << sum << "\n";
return 0;

}

main() is the only function which must

be included in every C++ programme

This is where the programme execution begins

{ } indicates the start and end of the main() functions code

int specifies the type of data that main() will return (integer)

What’s happening here?

This defines three variables which will be called within the main()

function.

Variables must be defined before use, i.e. given a designated data

type

These are defined to have an integer data type

Notice that all C++ statements end with a semicolon

What’s happening here?

This is a console output statement

It causes ‘Enter two integers’ to be printed on the screen

This is achieved with the output operator: <<

cout is a pre-defined identifier which stands for console output

“Enter two integers:” is a string, identified with double quotes

What’s happening here?

This is a console input statement

Following the previous statement, the user is prompted to enter two integers

into the terminal

This is achieved with the input operator: >>

cin is a pre-defined identifier which stands for console input

The previously defined variables first_number & second_number are assigned

the values inputted

What’s happening here?

This is a single line comment

// tells the compiler to ignore this sentence

These are used by developers to comment on code

In this case, it tells the reader what the function is doing

What’s happening here?

This gives the variable sum the value of first_number +

second_number

This is achieved with the addition operator +

What’s happening here?

This console output commands prints the stored variables and some

strings

This results in a human-readable text output of the operation undertaken

by the program

“\n” is a command that tells the console to go to the next line

What’s happening here?

This terminates main() and causes it to return a value of 0 to the calling

process

All your programs should return 0 when they terminate normally

} is the formal end of the program

What’s happening here?

Next steps

Play around with this script using other operators (e.g. +, -, /, *) to get a feel

for how they work

Use different data types (e.g. int, float) and see how the operators interact

with them

Next Week(s)

Data Types Loops Functions

Plotting Data

Homework

Get your compiler working (if it isn’t already) and run a basic

script

Thanks!

	Slide 1
	Slide 2: Course Aims
	Slide 3: Resources
	Slide 4: Course Composition
	Slide 5: Aim of Workshop One
	Slide 6: Introductions
	Slide 7: My research
	Slide 8: Current research: medical physics
	Slide 9: Current research: medical physics
	Slide 10: My role here
	Slide 11: Introductions
	Slide 12: Slack channel
	Slide 13: What is C++?
	Slide 14: What is C++?
	Slide 15: What is C?
	Slide 16: What is C?
	Slide 17: Programming languages
	Slide 18
	Slide 19: Features of C
	Slide 20: Why C++?
	Slide 21: C++ History
	Slide 22: Procedural programming
	Slide 23: Object oriented programming
	Slide 24: Encapsulation: Better control
	Slide 25: Inheritance: better re-use of code
	Slide 26: Inheritance
	Slide 27: Polymorphism: Better flexibility
	Slide 28: C++ is flexible. You can use OOP, but you don’t have to
	Slide 29: Getting started with C++
	Slide 30: IDE – Integrated Development Environment
	Slide 31: COMPILERS
	Slide 32: COMPILERS
	Slide 33: example
	Slide 34: Getting started…
	Slide 35
	Slide 36: Getting started…
	Slide 37: Running the script
	Slide 38: Congratulations/commiserations!
	Slide 39: What’s happening here?
	Slide 40: What’s happening here?
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Next steps
	Slide 53: Next Week(s)
	Slide 54: Homework
	Slide 55: Thanks!

