November 2024@

Introduction to C++:
Workshop Six

Dr. Alexander Hill

a.d.hill@liverpool.ac.uk

INNO

Last Week

Monte Carlo Basics

Generating random numbers in C++

INNO

Aim of Workshop Six @

Homework recap

Markov Chains

Group Project

INNO

Resources @

Previous lecture slides for details on random numbers,
classes, functions, etc.

alex-hill94.github.io/#WS6 for slides and recordings of
previous workshops

https://cplusplus.com/reference/random

INNO

[Challenge Ten (Homework)} @

For the circle described by x? +
y? = 0.5%, compute its area using 0.5
a Monte Carlo method

l.e. draw random x and y between
-0.5 and 0.5, and compute the
fraction of draws that satisfy x? +
y? < 0.52

-0.5 0.5

How many draws do you need to

get ~1% error on r? ? 0.5

INNO

<random>
<iostream>
<cmath>

——— Andrew &

bool isInside(double x, double y, double radius)

radius radius);

y

int main(int argc, char argvll])

{
int trials 1le3; // number of trials
int inside @; // number of points inside the circle

$./output double radius .5;

P1 1s approximately: 3.168

Error: 0.840572% random_device rd;
$./output mt19937 gen(rd());

.. . . uniform_real_distribution<> distr(-radius, radius);
P1 is approximately: 3.184 (size t 1 = 03 1 < trials; i++)

Error: 1.34987% {
$./Output double x = distr(gen);

. . . double y = distr(gen);
Pi is approximately: 3.196 inside isInside(x, y, radius);
Error: 1.73184% I
double res 4.0 inside trials;
Nice and concise cout "Pi is approximately: " res endl;

cout "Error: " 100 * abs(M_PI res) / M_PI "o endl;

Computes error on pi, not)
the area

o 49

int main(){

int ndraws;

cout "Number of draws: ";
cin ndraws;

cout endl;

double radius 0.5;
double range_from_x radius;
double range_to_x radius;
double range_from_y radius;
double range_to_y radius;

double 1in 0;
double out 0;
(int 1=0; i<ndraws; i++){
auto x_draw draw(range_from_x, range_to_x);
auto y_draw = draw(range_from_y, range_to_y);

Marina

(pow(x_draw,?2)+pow(y_draw,2)
1;

{out 1:}

}
double ratio in/ndraws;
double area = ratioxpow(2*radius,?2);

cout "Area: " area endl;

double error = abs((area
M_PIxpow(radius,2))/(M_PIxpow(radius,2)))*100;

cout "Error: " error endl;

0;

pow(radius,2)){

Marina

$./output
Number of draws: 100000

Area: 0.78429
Error: 0.141096

$./output
Number of draws: 10000

Area: 0.7802

Error: 0.661851

$./output

Number of draws: 1000

Area: 0.806
Error; 2.62311

// Function to estimate the area
double estimate_circle_area(int num_samples, double square_area) {

int count_inside_circle 0;
double square_side = std::sqrt(square_area);
double radius square_side/2;

// Generate random no's
std::random_device rd;

std::mt19937 gen(rd());
std::uniform_real_distribution<double> dis(-square_side/2, square_side/2); // Uniform
distribution between -0.5 and 0.5

$./output
Estimated area of the circle: 0.78339

(int i = 0; 1 < num_samples; ++i) { Actual area of the circle: 0.785398
double x = dis(gen);

double y = dis(gen);

(X * X +y *y radius*radius) { // Check if the point is inside the circle
count_inside circle++;
i Converts integer to a float

// Circle area calculation with respect to_ihe—sqUare area
double circle_area_estimate (double>(count_inside_circle) num_samples)
square_area;

circle_area_estimate;

Emlly $./output

Fraction inside the circle: 0.764
True area =0.785398

<iostream>

<vector>
<random>
namespace std;

bool area(double x, double y){
(x * x +y*xy)<0.5%*0.5;

}

double x = distr(generator);
double y = distr(generator);

int main() {
// Number of random values you want to generate
int numValuesToGenerate 1000;

int numValuesInsideCircle = 0; (area(x, y)) {

numValuesInsideCircle++;
}
}

double range_from 0.5;
double range_to = 0.5;

// Compute the fraction of draws that satisfy x™2 + y*2 < 0.5"2
double fractionInsideCircle double>(numValuesInsideCircle)
numValuesToGenerate;

(int 1 = 0; i < numValuesToGenerate; i++) {
random_device rand_dev;
mt19937 generator(rand_dev());
uniform_real_distribution<double> distr(-0.5, 0.5);

cout "Fraction inside the circle: " fractionInsideCircle endl;

double TrueArea M_PI 0.5 0.5;
cout "True area =" TrueArea "\n";

Nice and concise, good 0;

job!

;EP)
\Il\ﬁ=lllh
‘rmnm
N

r

Mehul C
int main(){

vector <int $./output

n_values={100,1000,10000, 100000, 1000000, 10000000} ; The value for pi with n = 100 1s 3.16 The error
vector <double> pi_values; on this 1s : -0.585924 %

vec’fg;t q?“ﬁlsalﬁggc)’ r_pi_value; The value for pi with n = 1000 is 3.228 The

{ LS error on this is : -2.75043 %

double pi_value = pi(j); The value for pi with n = 10000 is 3.142 The
pi_values.push_back(pi_value); error on this is : -0.0129662 %

double error = 100*(1-(pi_value/M_PI)); .. _ :
error_pi_value.push_back(error); The value for p1 with n = 100000 is 3.131438

cout "The value for pi with n ="] i The error on this is : 0.321896 %
pi_value " The error on this is : " The value for pi with n = 1000000 1s 3.14173

; endl; The error on this is : -0.00430821 %
0;

Looks good, error trend 1s
strange though, 1s there a

namespace std;

vector<double> Xx; -

vector<double> vy; Slnead d
int 1i;

int j;

int k;

int draw = 0; // Initialize 'draw' to 0

float fraction; $./output
double area; ' How many draws should be done? 100

Area of circle 1s: 0.1925
Actual area is: 0.19635
Error 1s: -1.99976
Draw count: 77

float fraction float>(draw) k; // Use k as the
total count, not a hardcoded number

//cout << fraction << endl;

double area = fraction * pow(0.5, 2); // Change 0.5 to 1.0 for
the full circle

double real_area = M_PI * pow(0.25, 2);

double error (1-real_area/area) *100;

cout "Area of circle is: " area endl;
cout "Actual area is: " real_area endl;
cout "Error is: " error endl;

// need approx 1000 draws to get error of ~ 1% on

cout "Draw count: " draw endl;

‘rlllllum
N’

7 MV
\dégzgyﬁtggf'

bl

7

<jostream>
<vector>
<random>
<cmath>
namespace std;

int main(){
// Set up random number generator

double range_from 0.5;

double range_to 0.5;
random_device rand_dev;
mt19937 generator(rand_dev());
uniform_real_distribution<double> distr(range_from,
range_to);

// Define tolerance

double tolerance le-2;

// Set up counts

double count 0;

double totalCount 0;

// Define each loop's estimate for pi and its error,
initialised as a nonzero value

double piGuess;

double absoluteError 1;

// Initialise values for x and y of each loop
double thisX;

double thisY;

Joe &

Nice adaptive approach

(absoluteError > tolerance){

// Generate random values for x and y
thisX = distr(generator);
thisY = distr(generator);
// If point is inside the circle, x™2 + y™2 <= r"2, and r
= 0.5

(thisXsthisX + thisYxthisY 0.25){
// If point is in circle, tick the count up by 1
count++;

I3
// Either way, tick up the total count by 1

totalCount++;

// Use count/totalCount = pi r*2 / Area of square
piGuess = 4*(count/totalCount);

// Calculate error based on cmath's value of pi
absoluteError = abs(piGuess — M_PI);

// Print results of each loop

cout "Trial " totalCount ", count is " count

}

, piGuess = piGuess endl;
¥

0;

Joe

$./output

Trial 1, count is 1, piGuess = 4

Trial 2, count is 2, piGuess = 4

Trial 3, count is 3, piGuess = 4

Trial 4, count is 3, piGuess = 3

Trial 5, count is 4, piGuess = 3.2
Trial 6, count is 5, piGuess = 3.33333

Trial 7, count is 6, piGuess = 3.42857 ount is 3.62076e+06, piGuess = 3.14159

Trial 4.6101e+06, count is 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62076e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62077e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62077e+06, piGuess = 3.14159
Trial 4.6101e+06, count 1s 3.62077e+06, piGuess = 3.14159
“{ Trial 4.61010e+06, count is 3.62077e+06, piGuess = 3.14159

Sakircan &

int 1in 0;
int out 0;

(int i =0; i n_data_points; i)

pow(0.5, 2))

$./output
100
0
1
. . 4
double area in n_data_points;
double pi = area / pow(0.5, 2);
cout in "\n";
cout out "\n";
cout area "\n";
cout pi "\n"";
AN IRNNEOY
\dézgsﬁizgi” BEN N

area

(int kk

int i

i i

<iostream>

<vector>
<random>

namespace std;
int main() {
float range_from 0.5;
float range_to = 0.5;

float x, y, fractionn 1, are

3.

141592

0, j = 0;
(int kK = 0; Kk
1;

random_device rand_dev;

mt19937 generator(rand_dev());
uniform_real_distribution<float
x = distr(generator);
y = distr(generator);

0.25;

10; kk 100; kk

kk; k++) {

double distance_sq = pow(x, 2)
(distance_sq < 0.25) {

j=3+1;

}

b

fractionn = (float)j (float)

1)

errorr = (area — fractionn)

cout

fractional error

hE
}

0,

errorr

a,

i;

errorr 0.1;

kk + 10) {

distr(range_from, range_to);

pow(y, 2);

//fraction is area (mult factor is area of square, here

area;
"The area of circle by Monte Carlo methode is "

with sample size of "

fractionn

i

I\nl;

$./output

The area of circle by Monte Carlo methode is 0.6 with fractional error 0.236056
with sample size of 10

The area of circle by Monte Carlo methode is 0.65 with fractional error 0.172394
with sample size of 20

The area of circle by Monte Carlo methode is 0.866667 with fractional error -
0.103475 with sample size of 30

The area of circle by Monte Carlo methode is 0.8 with fractional error -0.0185919
with sample size of 40

The area of circle by Monte Carlo methode is 0.8 with fractional error -0.0185919
with sample size of 50

The area of circle by Monte Carlo methode is 0.766667 with fractional error
0.0238495 with sample size of 60

The area of circle by Monte Carlo methode is 0.785714 with fractional error -
0.000402678 with sample size of 70

The area of circle by Monte Carlo methode is 0.7625 with fractional error
0.0291547 with sample size of 80

The area of circle by Monte Carlo methode is 0.766667 with fractional error
0.0238495 with sample size of 90

" with

Markov Chain Monte Carlo (MCMC)

Monte Carlo: estimate the expected value or

probability density of some unknown space by
drawing independent random values

For high-dimension probabilistic models, Monte
Carlo sampling may not be effective, as volume of
sample space grows exponentially with additional
parameters

MCMCs try to sample more intelligently, the next
random draw depends on the current one

Andrey Markov

Markov Chains

A simple Markov Chain uses stochastic
processes to determine the evolving
state of a system

Consider this system, it describes
whether someone attends class given
their previous attendance

E.g. if you attend class one week, there’s
a 90% chance you will the next

FROM

.
/

TO
attend skip
attend (0.9 0.1
skie 0.6 0.4

Transition matrix

LIVIINNO

0.4

Markov Chains

[Star]t with initial state of attendance: Xy =
1,0

X, = X,T = [0.9,0.1]
X, = X;T = [0.87,0.13]

In the long-run, you approach a steady
state, i.e. X,,,1 = X,

FROM

TO
attend skip
attend (0.9 0.1
skib 0.6 0.4

Transition matrix

LIVIINNO

0.4

Markov Chains
Xs—XT=0

X,(I =T) =0

[x,] (—()(.)?6 _0(.)61) =0

0.1x —0.6y=0andx+y =1

FROM attend

vl

TO
attend skip

09 0.1
0.6 0.4

Transition matrix

.

LIVIINNO

0.4

Markov Chains @

Markov chains can also be used to generate a sequence of random variables
where the current value is dependent on the value of the prior value

An example of this is a number line, where possible moves are -1 and 1
(chosen with equal probability)

MCMCs are Monte Carlo methods where a Markov chain is used to draw
samples

The idea is that the chain will settle (find equilibrium) on the desired quantity
we are inferring

INNO

Markov Chains

Create a class that generates random numbers from a uniform
distribution

Create a Markov Chain class that predicts which US party will win the
next election (lookup matrices, matrix mutlipliaction, if statements etc.)

Assume initially a Dem is in power X0 = [1,0], create a method in the
MC class that calculates analytically the steady state vector, i.e. the
orobability that in a given year either party will be in power

Create another method that uses random draws from the random
number class to stochastically oredict who will be in power for each of
the next 20 cycles

0.65

Create a figure showing how the holder of office changed over the 20
cycles

O

Group Project

INNO

Group Project @

Context: ballistics in the 1800s

Aim: determine the accuracy of
various weapons at a given
distance

alex-hill94.github.io/#Proj

Project Description @

0=6,+0,

h3=2m

i h, = 30cm

0.10

0.08! .

0.06 0,, 1s sampled from a
0.04 normal distribution

INNO

Project Description

Step one: find the optimal angle required
to hit the bullseye.

9 =0,+0,

Step two: set this to be 6,.. Sample 6,, from
a normal distribution and add to 6, to find
0.

Step three: the soldier fires three times per
minute. Simulate one ‘trial” as being five
minutes of firing. How many times does he

hit the target? h; = 2m

1 h, = 30cm

Step four: run 1000, 10,000, 100,000 trials.
\AVh%t IS the distribution of the number of
its”s

Project Description @

Step five: compare the
performance of a rifle vs a
musket at 100m (details on
the main document)

Step six: run the experiment
for muskets and rifles at
various distances. At what
distance does it become
better to use one over the
other?

INNO

Project Delivery @

Group presentation on your planned approach, your code,
and your results (10-15 minutes plus time for questions)

Live demonstration on my laptop, will it compile and run first
time?

Produce data stream, save data, produce plots...

INNO

Tips @

Plan your approach and allocate tasks before you start coding

Don’t repeat yourself!

Generalise things as much as possible, and consider where it
would be useful to use classes

?om)municate via Slack, or book study rooms in the teaching hub
502

Try using GitHub if the project becomes complex

INNO

C

Group One Group Two Group Three
Sam Khang Luke
Emily Andrew Sinead
Marina Ana Mehul
Rupesh Sakrican

Room: 502-TR4(cap.84)
Date(s): Friday, 24/11/2023
Time: 13:00-15:00

> (VN7 kn ())Y
TP g ey LIVIINNO

INNO

